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Arizona State University

Largest U.S. University > 100,000 students

Research Expenditures
— Established 1885

ASU is one of the fastest growing
research enterprises in the united States. $61 8M

Reinventing itself to be a dominant research university

Largest U.S. Engineering School
— $115 M External Research . ®
— 24,500 students, ~350 Faculty N

Electrical, Computer, & Energy Engineering K
— $32 M in External Research . Universies Year
— ~70 Faculty (EE)

— Students: 315 PhD, 650 MS, 2200 Undergrads
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ASU’s WISCA Center
Wireless Information Systems and Computational Architectures
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algorithms, to implementation ¢ .
— Advanced communications, radar, sensing, positioning and »
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Topics

* Introduction
* Underlying Tech Development

* Important Developing Areas
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How Will RF Systems Change?

Needs

« Support wider range of users types and needs
— Humans have a narrow range of needs

* Increase node’s real-time flexibility
— Efficiently support several orders of magnitude of computational rates

» Support more sophisticated and collaborative use of spectrum
— Why do we isolate functions spectrally?

»e
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Nonhuman User Dominance

 Address needs of nonhuman users
— Nonhuman radios dominate in terms of number of users

* Require larger performance dynamic range
— Much wider range of communications needs
- Heartbeat signaling
- Relay multidimensional video

— Much wider computational range
« Measure temperature

« Reconstruct 3D model from image library
Internet

. Toaster
« May require much lower C-SWaP

— Attritable systems
— Years on a given charge
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Topics

* Underlying Tech Development
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Implications of Commercial Forces

» Accelerate research with interesting low-cost tools
— Broad availability of flexible RF
— New flexible computational tools
* ADRF
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X310 X Technology
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Processor

. Epr0|t grab-bag of new 5G tech
Carrier aggregation

Samsung g 7
mmWave 5G
128 Antenna

— mmWave

— Massive MIMO

— Small cells , System Or, Just Slap a
S New Sticker on

— loT (narrowband OFDM and non- g S s o the Phone

orthogonal RSMA)
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Fixing Processor Technology
DARPA DSSoC DASH Program

- Break traditional trade between flexibility _ -
Computational Power Efficiency

and performance
 Lead DARPA processor program gl 1000 &
P Prog 4m)l\ & o\%,\G
— $19M 100 +-
—3

— Domain-Specific System-on-Chip

DASH System on Chip 2 ustom E }/'/
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- Enable new low-cost high-performance systems
« Broaden system designers’ views of what is possible

Bliss — RF 2020-05 — 10 R. Uhrie, D. W. Bliss, C. Chakrabarti, U. Y. Ogras, J. Brunhaver, “Machine understanding of domain computation for Domain-Specific System-
on-Chips (DSSoC),” Proc. SPIE Open Architecture/Open Business Model Net-Centric Systems and Defense Transformation 2019



DARPA DSSoC DASH Technology

Technological Components Overall Technology

- Ontology — Develop understanding of Interaction ol e e
application computational structure — |
- Software — Produce suite of tools to enable easy ! ! : ! ! :
application development and debugging !
* MAC - Provide advance on-chip network o -1
p =L

* Intelligent Scheduler — Enable real-time
advanced SoC resource management

« Hardware — Develop advance advanced SoC

o MAP - SCHEDULE
Affinity i Appl il

computational units for suite of RF applications SN R T
* Demonstration — Develop example sophisticated </N > - o f‘g?o;prAN
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Topics

* Underlying Tech Development

* Important Developing Areas




Radio Interference-Mitigation Approaches

- Enable higher RF density by mitigating interference

- Exploit space-delay correlations of interference Space-
sources to mitigate Time -
— Space-time adaptive processing (STAP) Adaptive

Processing Y -

Space-Time :
Interference ‘I)?eceiver 7, € C(MantNtap)XNsamp
Transmitter W = (Z 7 H )—1 Z§Z c
X S—~—
C v,
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=C "V,

353
reg
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Adapted
Coefficients

Temporal Mitigation

* Exploit known temporal structure to mitigate
Temporal mitigation (estimation-subtraction)

High-Dimensional
Temporal Space

—

Decodable interference

<

Temporal _ ~ <
Interference  Mitigation ~ Transmitter =z—hxb
! b,
b
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D. W. Bliss and S. Govindasamy, “Adaptive Wireless Communications: MIMO Channels and Networks,” Cambridge University Press, Cambridge, 2013.



Fluid Communications Systems

Range of Applications

« Address needs of non-human users (loT) Link
Data Rate Length
. and Latenc Del
« Match waveform to environmental needs VZMSpieagd
Characteristics
« Break rigid standard paradigm 1—* \Lemele 72
rea rlgl S p g Spectral Doppler
Allocation yser Spread
Distribution

Employ fluid radio system
— Need flexibility not higher performance

— Modify waveform, transceiver, computations  , 57 4 __Example Comparison
to address needs gs Most Systems
| partom oty
 Scale consumptlon to needs §§ "é:: Operating Point
— J9int hardware.ls.oftware adaptivity S& L o | DataRatg
— High power efficiency 107 102105 104105 106 107 (P/S)

Redesign entire radio system
— Frequency synthesizers are problematic
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Ganapati Bhat, Sharanya Srinivas, Vamsi Chagari, Jaehyun Park, Thomas McGiffen, Hyunseok Lee, Daniel W. Bliss, Chaitali Chakrabarti, and Umit Y. Ogras, “Fluid
wireless protocols: energy-efficient design and implementation,” IEEE/ACM Symposium on Embedded Systems for Real-Time Multimedia, 2017.



Automotive Radars

Provide vehicle situational awareness

Accepted broadly
— New safety requirement
— Mass production

Drive system lower costs
— Short and “long” range automotive Third-generation

radars - $100 long-range radar
— 24 GHz and 77 GHz

Need improved system integration
and functionality

. Jie-cast
S packpiar
3 % https://spectrum.ieee.org/transportation/advanced-cars/longdistance-car-radar
ED
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MIMO Radar Channel

Concept of Virtual Array
Transmit . d /' Notional Model
Y o 2(t) = Y H(G)s(t — ) +n(t)
-d — —
] ! Received 0 Channel §
Receive ym/ d Signals Matrices .
A 0 Transmitted
rray k- +Sign s
] 1 k- X
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ei772d eind einO
H(0) oc | \end " eind__Se—ind 'n=k-d
61'770 e—z’nd e—z’fr]2d

2d x1
) ] * Use MIMO virtual array to increase degrees of freedom

N_IIMO ) / — Convolution of real arrays produces virtual array
\zﬁ:al * Disentangle MIMO channel by exploiting transmitter diversity
il
y | * Consider new geometries
-2d X

S ¥ y
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Personal Radars

» Expect single-chip radars to be the Google ATAP’s Soli
next camera phone tech Google 1/0
— RF convergence for mmWave

» Address new application areas
— Human interface
— Health monitoring
— Situational awareness

Cardiac Radar

RR Interval Analysis
Radar Cardiac Measurement

MIMO
Radar

=

;

BLISS Lab

Walabot Imaging Sensor E JL-UJNU“»L

€
Y. Rong and D. W. Bliss, “Direct RF Signal Processing For Heart-Rate Monitoring Using UWB Impulse Radar,” IEEE Asilomar
Bliss — RF 2020-05 - 17 Conference on Signals, Systems, and Computers, Oct., 2018.




RF Convergence

* Provide more effective use of RF spectrum Automotive Comms & Positioning
- e rD__ __
* Reuse RF signals and receivers o0 oD THN
— Node performs multiple tasks simultaneously
with same RF energy Joint Communications and Radar Systems
« Remove artificial separation between Reroture Phones
) . ecognize Gestures
communications, radar, EW, & RF SA With Radar

Improve rather than degrade performance Military Systems

by friendly RF systems

— Radios can estimate channels

— Radars can decode and transmit
communications signals

— Radar waveform is the communications signal

¢
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B. Paul, A. R. Chiriyath and D. W. Bliss, "Survey of RF Communications and Sensing Convergence Research," in IEEE Access, vol. 5, pp. 252-270, 2017.



Simple Topological Models

Communications and Radar Examples

Decompose more complicated networks into basic components

nget Target
Target _ — \ReAceiver \ Field
L Receiver Communications ——
Communications \ And Radar o \
And Radar Nluminator Communications
IHluminator And I_Radar
Radar Illuminator
. Target

Radar
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Multi-Access Communications & Radar
Example Approach

* Recover radar return and communications
simultaneously ®

* Explore joint estimation, detection and
information theory

Transmit Radar Remove Decode Remove Process
Radar - = Y, => Predicted -> -> Comms ->  Radar
Channel Comms .
Waveform 4‘ Return Signal Return
Comms Comms Communications Radar
Signal Channel Info Info
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D. W. Bliss, "Cooperative radar and communications signaling: The estimation and information theory odd couple,"
|IEEE Radar Conference, Cincinnati, 2014.



Joint Radar-Communications System
MATLAB-in-the-Loop Experiments

R o Laboratory Setup
 Demonstrate feasibility of joint LR e
radar-communications system

— Use dynamic network of software
defined radios

. Joint Radar &
— Chirp and QPSK waveforms Communications Node

— Intelligent power and rate control
between systems

* Decode communications

Magnitude (dB)
Magnitude (dB)

* Remove communications

Frequency (MHz)
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* Observe chirp with little | ' . 15

Low Time (1 s)

communications residual Residual

Bliss — RF 2020-05 — 21 R. M. Gutierrez, H. Yu, A. R. Chiriyath, G. Gubash, A. Herschfelt and D. W. Bliss, "Joint Sensing and Communications Multiple-Access System Design and
Experimental Characterization," IEEE Aerospace Conference, Big Sky, 2019.




Multiuser Communications & Multi-Static SAR
MATLAB Simulation

R,
* Design joint radar-communications system SIC Poin
= » log, 1+£: A C k
* Develop multi-static channel model (+2) (0 020) e~ Sowe
1+ Pzz D
» Approach performance bounds (erva) Nsic Pon -
R

]

« Perform SAR imaging o (14 757) oo (1432)
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A. Herschfelt and D. W. Bliss, "Joint radar-communications waveform multiple access and synthetic aperture radar receiver,"
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Multi-Access Receive and Relay

Simple Example
. . . Radar Target . 7
- Optimize operating point J o
— Maximize objective function Communications v Mllgg;éﬁlceiss
. . . . i i o
- Evaluate theoretical joint manifold Receiver _ side & A &Relay
&
6\

* Investigate operating point selection _—
) . ) Communications

— Simple example: multi-access receive and relay Transmitter
— Simple objective function

o = argmaxa{Rweighted(a; Westy Weom s wrelay)}
West Rest + Weom Rcom + Wrelay Rrelay
West + Weom + Wrelay

Rweightad(a; Westy Weom s wralay) =

s Optimized
p rfy stem - Parameter 0.8
errformance .
Manifold
5x107
Rrelay
4x10° 80000
Rcom 2x10° 40000
20000 R,

¢
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Daniel W. Bliss, “Communication & Radar Co-Design” in Radar and Communications Spectrum Sharing, The Institution of Engineering and Technology (IET), 2018



Distributed Coherent Systems

« Allow disparate systems to act like they have a common clock
— Phase-cohere systems Distributed Coherence

— Phase-accurate time transfer . ‘

 Employ co-use communications and positioning waveform

* Enable new functionalities
— Distributed beamforming: Power ~ N2
— Carrier-phase accurate position and
navigation
Joint MIMO Communications and
Distributed Beamforming Positioning Waveform

' =2
| o —
ol

Bliss — RF 2020-05 — 24 A. Herschfelt and D. W. Bliss, “Joint Positioning-Communications System Design: Leveraging Phase-Accurate Time-of-Flight
Estimation and Distributed Coherence,” IEEE Asilomar Conference on Signals, Systems, and Computers, Oct., 2018.




Joint Communications and Positioning

- Exploit flexible radio technology to enable range of time and
position critical applications

UAS Remote Positioning

Automotive Comms & Positioning

L B W e R R — iar— Y

* Pursuing advanced position estimation techniques

Theoretical Ranging

) Ambiguity Function A Performance
c Phase No Inf
o Ambiguity_> < > |  — o Info
E Envelope g ‘é

Distributed Coherence £ Ambiguity W ¢
3 £s
(7}

) 3 =€
=
(&)
Scaled Delay —
* SNR (dB)
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Estimation and Distributed Coherence,” IEEE Asilomar Conference on Signals, Systems, and Computers, Oct., 2018.



Summary

* Introduced ASU and WISCA
* Observed users are becoming less human
* Identified important driving tech development

* Provided examples of new RF application directions
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