# Future of RF Spectral Use Prof. Daniel W. Bliss

School of Electrical, Computer, and Energy Engineering Arizona State University

Director of WISCA Center Wireless Information Systems and Computational Architectures



# **Arizona State University**



- Reinventing itself to be a dominant research university
- Largest U.S. Engineering School
  - \$115 M External Research
  - 24,500 students, ~350 Faculty
- Electrical, Computer, & Energy Engineering
  - \$32 M in External Research
  - ~70 Faculty (EE)
  - Students: 315 PhD, 650 MS, 2200 Undergrads





Year

\*U.S. Universities without medical schools





# **My History**



WISCA



### ASU's WISCA Center Wireless Information Systems and Computational Architectures

 $\mathbf{Z} \in \mathbb{C}^{(n_{ant} \cdot n_{tap}) \times n_{samp}}$ • Move from new concept, to new theory, to new  $\in \mathbb{C}^{(n_{ant} \cdot n_{tap}) \times 1}$ algorithms, to implementation WISCA - Advanced communications, radar, sensing, positioning and navigation Est. June 6, 2010 Enable next generation advanced RF system research **SDR Flexible** Network **Perform experimental demonstrations Develop new high-performance flexible** Semicomputational architectures Custom **SDRs** - Heterogeneous architectures **New Chip Architectures** Experiments **DASH System on Chip** Ontology Intelligent Scala Scheduler Software Processo Recent and Current Funding Sources Red-Side Scala Processor Google Viasat l inear Raytheon Algebra Application Specific Kernel FEC Engine NOKIA SYSTEMS &TECHNOLOGY RBUS 50 Interstate INCOLN LABORATORY CHUSETTS INSTITUTE OF TECHNOLOGY Broadcasting, LLC WISCA Bliss – RF 2020-05 – 4

wisca.asu.edu

### Topics

- Introduction
- Underlying Tech Development
- Important Developing Areas





### **How Will RF Systems Change?**

### Needs

- Support wider range of users types and needs
  - Humans have a narrow range of needs
- Increase node's real-time flexibility
  - Efficiently support several orders of magnitude of computational rates
- Support more sophisticated and collaborative use of spectrum Why do we isolate functions spectrally?





### **Nonhuman User Dominance**

#### Address needs of nonhuman users

- Nonhuman radios dominate in terms of number of users

#### Require larger performance dynamic range

- Much wider range of communications needs
  - Heartbeat signaling
  - Relay multidimensional video
- Much wider computational range
  - Measure temperature
  - Reconstruct 3D model from image library
- May require much lower C-SWaP
  - Attritable systems
  - Years on a given charge









### Topics

### Introduction

- Underlying Tech Development
- Important Developing Areas





### **Implications of Commercial Forces**

#### Accelerate research with interesting low-cost tools

- Broad availability of flexible RF
- New flexible computational tools





- Exploit grab-bag of new 5G tech
  - Carrier aggregation
  - mmWave
  - Massive MIMO
  - Small cells
  - IoT (narrowband OFDM and nonorthogonal RSMA)



Samsung mmWave 128 Antenna System

tps://www.technologyreview.com/s/515631/samsung-says-new-superfast-5gorks-with-handsets-in-motion/



Or, Just Slap a New Sticker on the Phone





### Fixing Processor Technology DARPA DSSoC DASH Program



- Enable new low-cost high-performance systems
- Broaden system designers' views of what is possible







# **DSSoC DASH Technology**

#### **Technological Components**

**Imitation Learning for IS** 

Bliss – RF 2020-05 – 11

- **Ontology** Develop understanding of application computational structure
- Software Produce suite of tools to enable easy application development and debugging
- MAC Provide advance on-chip network
- Intelligent Scheduler Enable real-time advanced SoC resource management
- Hardware Develop advance advanced SoC computational units for suite of RF applications
- **Demonstration** Develop example sophisticated MIMO SDR

C Application

Trace Collection

Carnegie

University

Mellon

Compilation to LLVM

**Collins Aerospace** 

Node 0



UNIVERSITY OF

### Topics

- Introduction
- Underlying Tech Development
- Important Developing Areas





### **Radio Interference-Mitigation Approaches**



# Fluid Communications Systems

- Address needs of non-human users (IoT)
- Match waveform to environmental needs
- Break rigid standard paradigm
- **Employ fluid radio system** •
  - Need flexibility not higher performance
  - Modify waveform, transceiver, computations to address needs
- Scale consumption to needs
  - Joint hardware/software adaptivity
  - High power efficiency
- **Redesign entire radio system** •
  - Frequency synthesizers are problematic



**10<sup>2</sup> 10<sup>3</sup> 10<sup>4</sup> 10<sup>5</sup> 10**<sup>6</sup>



(b/s)



**10**<sup>1</sup>

### **Automotive Radars**

- Provide vehicle situational awareness
- Accepted broadly
  - New safety requirement
  - Mass production

### Drive system lower costs

- Short and "long" range automotive radars ~ \$100
- 24 GHz and 77 GHz
- Need improved system integration and functionality





# **MIMO Radar Channel**

**Concept of Virtual Array** 





D. W. Bliss and K. W. Forsythe, "Multiple-input multiple-output (MIMO) radar and imaging: degrees of freedom and resolution," IEEE Asilomar Conference on Signals, Systems & Computers, 2003

WISC/

### **Personal Radars**





WISCA

### **RF** Convergence

- Provide more effective use of RF spectrum
- Reuse RF signals and receivers
  - Node performs multiple tasks simultaneously with same RF energy
- Remove artificial separation between communications, radar, EW, & RF SA
- Improve rather than degrade performance by friendly RF systems
  - Radios can estimate channels
  - Radars can decode and transmit communications signals
  - Radar waveform is the communications signal







### Simple Topological Models Communications and Radar Examples







### Multi-Access Communications & Radar Example Approach

- Recover radar return and communications simultaneously
- Explore joint estimation, detection and information theory









### Joint Radar-Communications System MATLAB-in-the-Loop Experiments

- Demonstrate feasibility of joint radar-communications system
  - Use dynamic network of software defined radios
  - Chirp and QPSK waveforms
  - Intelligent power and rate control between systems
- Decode communications
- Remove communications
- Observe chirp with little communications residual

#### Laboratory Setup



#### -65 Frequency (MHz) requency (MHz) Magnitude (dB) (dB Magnitude -85 25 10 15 20 20 25 15 Low Time (µ s) Time ( $\mu$ s) Residual

WISCA



#### **Performance Evaluation**

### **Multiuser Communications & Multi-Static SAR MATLAB** Simulation

- Design joint radar-communications system
- Develop multi-static channel model
- Approach performance bounds
- Perform SAR imaging



Rate

Erro ± m







WISCA



A. Herschfelt and D. W. Bliss, "Joint radar-communications waveform multiple access and synthetic aperture radar receiver," IEEE Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, 2017.

# Multi-Access Receive and Relay

Simple Example



### **Distributed Coherent Systems**

- Allow disparate systems to act like they have a common clock
  - Phase-cohere systems
  - Phase-accurate time transfer

**Distributed Coherence** 



Employ co-use communications and positioning waveform

### Enable new functionalities

- Distributed beamforming: Power ~ N<sup>2</sup>
- Carrier-phase accurate position and navigation



Joint MIMO Communications and Positioning Waveform



WISC



A. Herschfelt and D. W. Bliss, "Joint Positioning-Communications System Design: Leveraging Phase-Accurate Time-of-Flight Estimation and Distributed Coherence," IEEE Asilomar Conference on Signals, Systems, and Computers, Oct., 2018.

# **Joint Communications and Positioning**

- Exploit flexible radio technology to enable range of time and position critical applications
  - Automated vehicles
  - Urban air mobility



#### **UAS Remote Positioning**



### Pursuing advanced position estimation techniques

- MIMO phase recover
- Distributed coherent
- Secure & reliable

Bliss – RF 2020-05 – 25

#### **Distributed Coherence**









A. Herschfelt and D. W. Bliss, "Joint Positioning-Communications System Design: Leveraging Phase-Accurate Time-of-Flight Estimation and Distributed Coherence," IEEE Asilomar Conference on Signals, Systems, and Computers, Oct., 2018.

### Summary

- Introduced ASU and WISCA
- Observed users are becoming less human
- Identified important driving tech development
- Provided examples of new RF application directions



