The Future of RF Systems

Prof. Daniel W. Bliss

School of Electrical, Computer, and Energy Engineering

Director of WISCA Center
Wireless Information Systems and Computational Architectures

Arizona State University

- Largest U.S. University ~100,000 students
 - Established 1885
- Reinventing itself to be a dominant research university
- Largest U.S. Engineering School
 - \$105 M External Research
 - 22,500 students, ~350 Faculty
- Electrical, Computer, & Energy Engineering
 - \$32 M in External Research
 - ~70 Faculty (EE)
 - Students: 315 PhD, 650 MS, 2200 Undergrads

Year

*U.S. Universities without medical schools

ASU's WISCA Center Wireless Information Systems and Computational Architectures

- Move from new concept, to new theory, to new algorithms, to implementation
 - Advanced communications, radar, sensing, positioning and navigation

- Perform experimental demonstrations
- **Develop new high-performance flexible** computational architectures
 - Heterogeneous architectures

New Chip Architectures

Theory

 $c = \log_2(1 + snr)$

WISCA

wisca.asu.edu

Semi-

SDR Flexible Network

> Custom **SDRs**

> > WISCA

Recent and Current Funding Sources

Experiments

NOKIA

Interstate Broadcasting, LLC

Topics

- Introduction
- Underlying Tech Development
- Important Developing Areas

How Will RF Systems Change?

Needs

- Support wider range of users types and needs
 - Humans have a narrow range of needs
- Increase node's real-time flexibility
 - Efficiently support several orders of magnitude of computational rates
- Support more sophisticated and collaborative use of spectrum
 - Why do we isolate functions spectrally?

Nonhuman User Dominance

- Address needs of nonhuman users
 - Nonhuman radios dominate in terms of number of users
- Require larger performance dynamic range
 - Much wider range of communications needs
 - Heartbeat signaling
 - Relay multidimensional video
 - Much wider computational range
 - Measure temperature
 - Reconstruct 3D model from image library
- May require much lower SWaP-C
 - Attritable systems
 - Years on a given charge

Topics

- Introduction
- Underlying Tech Development
- Important Developing Areas

Implications of Commercial Forces

- Accelerate research with interesting low-cost tools
 - Broad availability of flexible RF
 - New flexible computational tools

- Exploit grab-bag of new 5G tech
 - Carrier aggregation
 - mmWave
 - Massive MIMO
 - Small cells
 - loT (narrowband OFDM and nonorthogonal RSMA)

Samsung mmWave 128 Antenna System

Fixing Processor Technology DARPA DSSoC DASH Program

- Break traditional trade between flexibility and performance
- Lead DARPA processor program
 - Domain-Specific System-on-Chip
 - \$17M

- Enable new low-cost high-performance systems
- Broaden system designers' views of what is possible

RF Interference-Mitigation Approaches

- Enable higher RF density by mitigating interference
- Exploit space-delay correlations of interference sources to mitigate
 - Space-time adaptive processing (STAP)

- Exploit known temporal structure to mitigate
 - Temporal mitigation (estimation-subtraction)
 - Decodable interference

 $egin{aligned} & ilde{\mathbf{z}} = \mathbf{\underline{z}} \left[\mathbf{I} - \mathbf{B}^H \, (\mathbf{B} \, \mathbf{B}^H)^{-1} \, \mathbf{B}
ight] \ & = \mathbf{\underline{z}} - \hat{\mathbf{\underline{h}}} * \mathbf{\underline{b}} \ & \mathbf{B} = \left(egin{aligned} & \mathbf{\underline{b}}_{ au_1} \ & \mathbf{\underline{b}}_{ au_2} \end{aligned}
ight) \end{aligned}$

Topics

- Introduction
- Underlying Tech Development
- Important Developing Areas

Fluid Communications Systems

- Address needs of non-human users (IoT)
- Match waveform to environmental needs
- Break rigid standard paradigm
- Employ fluid radio system
 - Need flexibility not higher performance
 - Modify waveform, transceiver, computations to address needs
- Scale consumption to needs
 - Joint hardware/software adaptivity
 - High power efficiency
- Redesign entire radio system
 - Frequency synthesizers are problematic

Automotive Radars

- Provide vehicle situational awareness
- Accepted broadly
 - New safety requirement
 - Mass production
- Drive system lower costs
 - Short and "long" range automotive radars ~ \$100
 - 24 GHz and 77 GHz
- Need improved system integration and functionality

Personal Radars

- Expect single-chip radars to be the next camera phone tech
 - RF convergence for mmWave
- Address new application areas
 - Human interface
 - Health monitoring
 - Situational awareness

Google ATAP's Soli

MIMO Radar Channel

Multiple-Input Multiple-Output

;
$$\eta = \mathbf{k} \cdot \mathbf{d}$$

- Use MIMO virtual array to increase degrees of freedom
 - Convolution of real arrays produces virtual array
- Disentangle MIMO channel by exploiting transmitter diversity
- Consider new geometries
 - Virtual array may over-represented elements
 - Sparse arrays

Array

RF Convergence

- Provide more effective use of RF spectrum
- Reuse RF signals and receivers
 - Node performs multiple tasks simultaneously with same RF energy
- Remove artificial separation between communications, radar, EW, & RF SA
- Improve rather than degrade performance by friendly RF systems
 - Radios can estimate channels
 - Radars can decode and transmit communications signals
 - Radar waveform is the communications signal

Automotive Comms & Positioning

Joint Communications and Radar Systems

Future Phones
Recognize Gestures
With Radar

Military Systems Target Field

Multi-Access Communications & Radar Example Approach

- Recover radar return and communications simultaneously
- Explore joint estimation, detection and information theory
 - Interactions between sensing and communications

Joint Radar-Communications System MATLAB-in-the-Loop Experiments

- Demonstrate feasibility of joint radar-communications system
 - Use dynamic network of software defined radios
 - Chirp and QPSK waveforms
 - Intelligent power and rate control between systems
- Decode communications
- Remove communications
- Observe chirp with little communications residual

Laboratory Setup

Multiuser Communications & Multi-Static SAR MATLAB Simulation

- Design joint radar-communications system
- Develop multi-static channel model
- Approach performance bounds
- Perform SAR imaging

Distributed Coherent Systems

- Allow disparate systems to act like they have a common clock
 - Phase-cohere systems
 - Phase-accurate time transfer

- Employ co-use communications and positioning waveform
- Enable new functionalities
 - Distributed beamforming: Power ~ N²
 - Carrier-phase accurate position and navigation

Joint MIMO Communications and Positioning Waveform

Joint Communications and Positioning

- Exploit flexible radio technology to enable range of time and position critical applications
 - Automated vehicles
 - Urban air mobility

Automotive Comms & Positioning

- Pursuing advanced position estimation techniques
 - MIMO phase recover
 - Distributed coherent
 - Secure & reliable

Distributed Coherence

Summary

- Introduced ASU and WISCA
- Observed users are becoming less human
- Identified important driving tech development
- Provided examples of new RF application directions

